Practice Parameter: Evaluation of distal symmetric polyneuropathy: Role of laboratory and genetic testing (an evidence-based review) : Report of the American Academy of Neurology, American Association of Neuromuscular and Electrodiagnostic Medicine, and American Academy of Physical Medicine and Rehabilitation


Neurology 2009;72;185; Published online before print December 3, 2008;
DOI 10.1212/01.wnl.0000336370.51010.a1

This information is current as of January 10, 2013

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://www.neurology.org/content/72/2/185.full.html

Neurology® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2009 by AAN Enterprises, Inc. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.
Practice Parameter: Evaluation of distal symmetric polyneuropathy: Role of laboratory and genetic testing (an evidence-based review)

Report of the American Academy of Neurology, American Association of Neuromuscular and Electrodagnostic Medicine, and American Academy of Physical Medicine and Rehabilitation

J.D. England, MD
G.S. Gronseth, MD, FAAN
G. Franklin, MD
G.T. Carter, MD
L.J. Kinsella, MD
J.A. Cohen, MD
A.K. Asbury, MD
K. Szigeti, MD, PhD
J.R. Lupski, MD, PhD
N. Latov, MD
R.A. Lewis, MD
P.A. Low, MD
M.A. Fisher, MD
M. Polydefkis, MD, MHS
A.J. Sumner, MD

ABSTRACT

Background: Distal symmetric polyneuropathy (DSP) is the most common variety of neuropathy. Since the evaluation of this disorder is not standardized, the available literature was reviewed to provide evidence-based guidelines regarding the role of laboratory and genetic tests for the assessment of DSP.

Methods: A literature review using MEDLINE, EMBASE, and Current Contents was performed to identify the best evidence regarding the evaluation of polyneuropathy published between 1980 and March 2007. Articles were classified according to a four-tiered level of evidence scheme and recommendations were based upon the level of evidence.

Results and Recommendations: 1) Screening laboratory tests may be considered for all patients with polyneuropathy (Level C). Those tests that provide the highest yield of abnormality are blood glucose, serum B12 with metabolites (methylmalonic acid with or without homocysteine), and serum protein immunofixation electrophoresis (Level C). If there is no definite evidence of diabetes mellitus by routine testing of blood glucose, testing for impaired glucose tolerance may be considered in distal symmetric sensory polyneuropathy (Level C). 2) Genetic testing should be conducted for the accurate diagnosis and classification of hereditary neuropathies (Level A). Genetic testing may be considered in patients with cryptogenic polyneuropathy who exhibit a hereditary neuropathy phenotype (Level C). Initial genetic testing should be guided by the clinical phenotype, inheritance pattern, and electrodiagnostic features and should focus on the most common abnormalities which are CMT1A duplication/HNPP deletion, Cx32 (GJB1), and MFN2 mutation screening. There is insufficient evidence to determine the usefulness of routine genetic testing in patients with cryptogenic polyneuropathy who do not exhibit a hereditary neuropathy phenotype (Level U).

Neurology® 2009;72:185–192

GLOSSARY

AAN = American Academy of Neurology; AANEM = American Academy of Neuromuscular and Electrodagnostic Medicine; AAPM&R = American Academy of Physical Medicine and Rehabilitation; CMT = Charcot-Marie-Tooth; DSP = distal symmetric polyneuropathy; EDX = electrodiagnostic; GTT = glucose tolerance testing; IFE = immunofixation electrophoresis; QSS = Quality Standards Subcommittee; SPEP = serum protein electrophoresis.

Polyneuropathy is a relatively common neurologic disorder. The overall prevalence is approximately 2,400 (2.4%) per 100,000 population, but in individuals older than 55 years, the prevalence rises to approximately 8,000 (8%) per 100,000. Since there are many etiologies of polyneuropathy, a logical clinical approach is needed for evaluation and management.

This practice parameter provides recommendations for the role of laboratory and genetic tests in the evaluation of distal symmetric polyneuropathy (DSP) based upon a prescribed review and analysis of...
the peer-reviewed literature. The parameter was developed to provide physicians with evidence-based guidelines regarding the role of laboratory and genetic tests for the assessment of polynuropathy.

The diagnosis of DSP should be based upon a combination of clinical symptoms, signs, and electrodiagnostic criteria as outlined in the previous case definition. See Mission statement (appendix e-1 on the Neurology® Web site at www.neurology.org) for details.

FORMATION OF EXPERT PANEL

The Polyneuropathy Task Force included 19 physicians with representatives from the American Academy of Neurology (AAN), the American Academy of Neuror muscular and Electrodiagnostic Medicine (AANEM), and the American Academy of Physical Medicine and Rehabilitation (AAPM&R). All of the task force members had extensive experience and expertise in the area of polynuropathy. Additionally, four members had expertise in evidence-based methodology and practice parameter development. Two are current members (J.D.E., G.F.), and two are former members (G.S.G., R.G.M.) of the Quality Standards Subcommittee (QSS) of the AAN. The task force developed a set of clinical questions relevant to the evaluation of DSP, and subcommittees were formed to address each of these questions.

DESCRIPTION OF THE ANALYTIC PROCESS

The literature search included OVID MEDLINE (1966 to March 2007), OVID Excerpta Medica (EMBASE; 1980 to March 2007), and OVID Current Contents (2000 to March 2007). The search included articles on humans only and in all languages. The search terms selected were peripheral neuropathy, polynuropathy, and distal symmetric polynuropathy. These terms were cross-referenced with the terms laboratory test, diagnosis, electrophysiology, and genetic testing.

Panel experts were asked to identify additional articles missed by the initial search strategy. Further, the bibliographies of the selected articles were reviewed for potentially relevant articles. Subgroups of committee members reviewed the titles and abstracts of citations identified from the original searches and selected those that were potentially relevant to the evaluation of polynuropathy. Articles deemed potentially relevant by any panel member were also obtained.

Each potentially relevant article was subsequently reviewed in entirety by at least three panel members. Each reviewer graded the risk of bias in each article by using the diagnostic test classification-of-evidence scheme (appendix e-2). In this scheme, articles attaining a grade of Class I are judged to have the lowest risk of bias, and articles attaining a grade of Class IV are judged to have the highest risk of bias. Disagreements among reviewers regarding an article’s grade were resolved through discussion. Final approval was determined by the entire panel. The AAN’s method for determining the strength of recommendation was used (appendix e-3).

The QSS (AAN; appendix 1), the Practice Issues Review Panel (AANEM; appendix 2), and the Practice Guidelines Committee (AAPM&R; appendix 3) reviewed and approved a draft of the article. The draft was next sent to members of the AAN, AANEM, and AAPM&R for further review and then to Neurology® for peer review. Boards of the AAN, AANEM, and AAPM&R reviewed and approved the final version of the article. At each step of the review process, external reviewers’ suggestions were explicitly considered. When appropriate, the expert panel made changes to the document.

ANALYSIS OF EVIDENCE

The search yielded 4,500 references with abstracts. After reviewing titles and abstracts, 450 articles were reviewed and classified.

Role of laboratory testing in the evaluation of polyneuropathy. With the exception of electrodiagnostic (EDX) studies, laboratory tests are not utilized to diagnose polynuropathy; however, laboratory tests are routinely utilized in patients with a diagnosis of polynuropathy as a screening test for specific etiologies. Several questions regarding the use of laboratory testing as a screening tool in the evaluation of polynuropathy were assessed.

What is the yield of screening laboratory tests in the evaluation of DSP, and which tests should be performed? The cause of most polyneuropathies is evident when the information obtained from the medical history, neurologic examination, and EDX studies are combined with simple screening laboratory tests. Such a comprehensive investigation yields an etiologic diagnosis in 74 to 82% of patients with polyneuropathy. In another study, laboratory abnormalities were documented in 58% of 91 patients with chronic cryptogenic polyneuropathy, but only 9% were etiologically diagnostic (Class III). The majority of studies indicated that screening laboratory tests comprised of a complete blood count, erythrocyte sedimentation rate, comprehensive metabolic panel (blood glucose, renal function, liver function), thyroid function tests, serum B12, and serum protein immunofixation electrophoresis are indicated for most patients with polyneuropathy. Five Class III studies indicated that the highest yield of abnormality was seen with screening for blood glucose,
and III.4,14-17 Serum methylmalonic acid and homocysteine were tested (Class II greater when the metabolites of cobalamin (methylmalonic acid and homocysteine) are useful in determining the cause of DSP, but the yield varies depending upon the particular test (Class III). The tests with the highest yield of abnormality are blood glucose, serum B12 with metabolites (methylmalonic acid and homocysteine), and serum protein immunofixation electrophoresis (SPEP), especially for detecting small or nonmalignant monoclonal gammopathies. Ten of 58 (17%) monoclonal gammopathies, including 10 of 36 (30%) with IgM <5 g/L, were identified by IFE but not by SPEP.23

Conclusions. Screening laboratory tests are possibly useful in determining the cause of DSP, but the yield varies depending upon the particular test (Class III). The tests with the highest yield of abnormality are blood glucose, serum B12 with metabolites (methylmalonic acid with or without homocysteine), and serum protein immunofixation electrophoresis (Class III). Patients with distal symmetric sensory polyneuropathy have a relatively high prevalence of diabetes or prediabetes (impaired glucose tolerance), which can be documented by blood glucose or GTT (Class III).

Recommendations. Screening laboratory tests may be considered for all patients with DSP (Level C). Although routine screening with a panel of basic tests is often performed (table e-1), those tests with the highest yield of abnormality are blood glucose, serum B12 with metabolites (methylmalonic acid with or without homocysteine), and serum protein immunofixation electrophoresis (Level C). When routine blood glucose testing is not clearly abnormal, other tests for prediabetes (impaired glucose tolerance) such as a GTT may be considered in patients with distal symmetric sensory polyneuropathy, especially if it is accompanied by pain (Level C).

Although there are no control studies (Level U) regarding when to recommend the use of other specific laboratory tests, clinical judgment correlated with the clinical picture will determine which additional laboratory investigations (table e-2) are necessary.

Role of genetic testing in the evaluation of polyneuropathy. Hereditary neuropathies are an important subtype of polyneuropathy with a prevalence of approximately 1:2,500 people. DSP is the predominant phenotype, but phenotypic heterogeneity may be present even within the same family; therefore, when
genetic testing is contemplated all neuropathy phenotypes need to be considered. In the evaluation of polyneuropathy, a comprehensive family history should always be elicited. A high index of suspicion for a hereditary neuropathy phenotype is essential. Since molecular diagnostic techniques are available, guidelines for their usefulness in the evaluation of polyneuropathy are needed.

The majority of genetically determined polyneuropathies are variants of Charcot-Marie-Tooth (CMT) disease, and genetic testing is available for an increasing number of these neuropathies. The clinical phenotype of CMT is extremely variable, ranging from a severe polyneuropathy with respiratory failure through the classic picture with pes cavus and “stork legs” to minimal neurologic findings. Since a substantial proportion of CMT patients have de novo mutations, a family history of neuropathy may be lacking. Additionally, different genetic mutations can cause a similar phenotype (genetic heterogeneity) and different phenotypes can result from the same genotype (phenotypic heterogeneity).

How accurate is genetic testing for identifying patients with genetically determined neuropathies? The CMT phenotype has been linked to 36 loci and mutations have been identified in 28 different genes, several of which can be identified by commercially available genetic testing. Previous segregation studies followed by several prospective cohort studies have documented that the results of currently available genetic testing are unequivocal for diagnosis of established pathogenic mutations, providing a specificity of 100% (i.e., no false positives) and high sensitivity (Class I and II). The interpretation of novel mutations may require further characterization available in specialized centers. Data from six Class I, six Class II, and one Class III study indicate that genetic testing is useful for the accurate classification of hereditary polyneuropathies. See table 1 for details.

Table 1 Evidence table for genetic testing

<table>
<thead>
<tr>
<th>Reference</th>
<th>Data collection</th>
<th>Setting*</th>
<th>Sampling</th>
<th>Completeness gene dependent</th>
<th>Masking</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Prospective</td>
<td>Referral center</td>
<td>NA</td>
<td>PMP22 dup</td>
<td>Waived</td>
<td>II</td>
</tr>
<tr>
<td>27</td>
<td>Prospective</td>
<td>Referral center</td>
<td>Consecutive</td>
<td>PMP22 dup</td>
<td>Waived</td>
<td>II</td>
</tr>
<tr>
<td>28</td>
<td>Prospective</td>
<td>Referral center</td>
<td>Consecutive</td>
<td>PMP22 mut, Cx32, MPZ</td>
<td>Waived</td>
<td>I</td>
</tr>
<tr>
<td>29</td>
<td>Prospective</td>
<td>Referral center</td>
<td>Consecutive</td>
<td>PMP22 dup, del, mut, Cx32, MPZ</td>
<td>Waived</td>
<td>I</td>
</tr>
<tr>
<td>30</td>
<td>Prospective</td>
<td>Referral center</td>
<td>Consecutive</td>
<td>PMP22 dup, del, Cx32</td>
<td>Waived</td>
<td>II</td>
</tr>
<tr>
<td>31</td>
<td>Prospective</td>
<td>NA</td>
<td>NA</td>
<td>PMP22 dup</td>
<td>Waived</td>
<td>III</td>
</tr>
<tr>
<td>32</td>
<td>Prospective</td>
<td>Referral center</td>
<td>Consecutive</td>
<td>PMP22 dup, del</td>
<td>Waived</td>
<td>I</td>
</tr>
<tr>
<td>33</td>
<td>Prospective</td>
<td>Referral center</td>
<td>Consecutive</td>
<td>PMP22 dup, mut, Cx32, MPZ</td>
<td>Waived</td>
<td>I</td>
</tr>
<tr>
<td>34</td>
<td>Prospective</td>
<td>Referral center</td>
<td>Consecutive</td>
<td>PMP22 dup, del, mut, Cx32, MPZ</td>
<td>Waived</td>
<td>II</td>
</tr>
<tr>
<td>35</td>
<td>Prospective</td>
<td>Referral center</td>
<td>Consecutive</td>
<td>PMP22 dup, mut, Cx32, MPZ</td>
<td>Waived</td>
<td>I</td>
</tr>
<tr>
<td>36</td>
<td>Prospective</td>
<td>Referral center</td>
<td>Consecutive</td>
<td>PMP22 dup, mut, Cx32, MPZ</td>
<td>Waived</td>
<td>I</td>
</tr>
<tr>
<td>37</td>
<td>Prospective</td>
<td>Referral center</td>
<td>Selected</td>
<td>MFN2</td>
<td>Waived</td>
<td>II</td>
</tr>
</tbody>
</table>

*Referral center for test, not for patient; patients come from general neurology clinics.

Which patients with polyneuropathy should be screened for hereditary neuropathies? Genetic studies of hereditary neuropathies have tested the prevalence of various mutations in selected patients with the classic CMT phenotype with and without a family history of polyneuropathy (Class III evidence for screening). For these patients, the yield of genetic tests has been relatively high. Data from seven studies indicate that the demyelinating form of Charcot-Marie-Tooth (CMT1) is the most prevalent, and about 70% of these patients have a duplication of PMP22 gene (CMT1A). CMT1A is also the most common variety of sporadic CMT1, accounting for 76–90% of cases. Six studies showed that when the test for CMT1A duplication is restricted to patients with clinically probable CMT1 (i.e., autosomal dominant, primary demyelinating polyneuropathy), the yield is 54–80% as compared to testing a cohort of patients suspected of having any variety of hereditary peripheral neuropathy where the yield is only 25–59% (average of 43%).

Axonal forms of Charcot-Marie-Tooth (CMT2) are most commonly caused by MFN2 mutations, which account for approximately 33% of the cases. MFN2 mutations have not occurred in the CMT1 group.

Data from eight studies indicate that Cx32 (GJB1) mutations cause an X-linked neuropathy (CMTX), which may present with either a predominantly demyelinating or axonal phenotype and account for approximately 12% of all cases of CMT. If the pedigree is uninformative as to whether the inher-
tance is autosomal dominant or X-linked (lack of fa-
ther to son transmission), \( \text{Cx32}(GJB1) \) mutation is in
the differential diagnosis for both predominantly de-
myelinating and axonal neuropathies.

Data from seven studies have established average
mutation frequencies of 2.5% for \( PMP22 \) point mu-
tations, and 5% for \( MPZ \) mutations in the CMT
population.\(^{27-29,34-36} \) CMT caused by other genes is
much less frequent (figure).

Given the relationships between pattern of inheri-
tance, EDX results, and specific mutations, the effi-
ciency of genetic testing can be improved by following a
stepwise evaluation of patients with possible hereditary
neuropathy. First, a clinical classification that includes
EDX studies should be performed to determine
whether the neuropathy is primarily demyelinating or
primarily axonal in type. Since EDX studies are some-
times problematic in children, some physicians may opt
to proceed directly to genetic testing of symptomatic
children suspected of having CMT. Secondly, the in-
heritance pattern (autosomal dominant, autosomal re-
cessive, or X-linked) should be ascertained. Based upon
this information, the most appropriate genetic profile
testing can then be performed.

The figure indicates an evidence-based, tiered ap-
proach for the evaluation of suspected hereditary
neuropathies, and table 2 shows the relative fre-
cuency of the most common genetic abnormalities
accounting for the CMT phenotype from population
studies.

The previous discussion applies to patients with
polyneuropathy and a classic hereditary neuropathy
phenotype with or without a family history. The au-
thors were not able to find studies of the yield of
genetic screening in polyneuropathy patients without
a classic hereditary neuropathy phenotype. Some pa-
tients with CMT genetic mutations have minimal
neurologic findings and do not have the classic CMT
phenotype.\(^{24,25} \) Thus, some patients with cryptogenic
polyneuropathies without the classic CMT phen-
type may also have hereditary neuropathies. The
prevalence of mutations in this population is
unknown.

**Conclusions.** Genetic testing is established as useful
for the accurate diagnosis and classification of hered-
itary polyneuropathies (Class I). For patients with a
cryptogenic polyneuropathy who exhibit a classic he-
reditary neuropathy phenotype, routine genetic
screening may be useful for CMT1A duplication/
deletion and \( \text{Cx32} \) mutations in the appropriate phe-
notype (Class III). Further genetic testing may be
considered guided by the clinical question. There is

![Figure](image_url)

**Figure Evaluation of suspected hereditary neuropathies**

- **Positive Family History**
  - EMG/NCS
    - Demyelinating
      - AD
      - AR
      - X
    - Axonal
      - AD
      - AR
      - X

- **Negative Family History**
  - EMG/NCS
    - Index of suspicion
    - 30% of mutations are de novo, molecular testing
    - Demyelinating
      - AD
      - AR
      - X
    - Axonal
      - AD
      - AR
      - X

- **First tier**
  - \( PMP22 \) dup 70%
  - \( GJB1 \) 12%
  - \( MFN2 \) mut 33%
  - \( GJB1 \) 12%
  - \( PMP22 \) dup
  - \( GJB1 \) mut

- **Second tier**
  - \( MPZ \) mut 5%
  - \( PMP22 \) mut 2.5%
  - \( MPZ \) mut 5%
  - \( PMP22 \) mut 2.5%
  - \( MPZ \) mut 5%

- **Third tier**
  - \( EGR2 \) mut
  - \( LITAF \) mut
  - \( PRX \) mut
  - \( GDAP1 \) mut
  - \( RAB7 \) mut
  - \( GARS \) mut
  - \( NEF \) mut
  - \( HSPB1 \) mut
  - \( EGR2 \) mut
  - \( LITAF \) mut
  - \( PRX \) mut
  - \( GDAP1 \) mut
  - \( RAB7 \) mut
  - \( GARS \) mut
  - \( NEF \) mut
  - \( HSPB1 \) mut
  - \( GDAP1 \) mut

*\( PMP22 \) denotes peripheral myelin protein 22; \( MPZ \) myelin protein zero; \( PRX \) periaxin; \( GDAP1 \) ganglioside-induced differen-
tiation-associated protein 1; \( GJB1 \) gap-junction beta-1 protein (connexin 32); \( MFN2 \) mitofusin 2; \( EGR2 \) early
growth response 2; \( LITAF \) lipopolysaccharide-induced tumor necrosis factor \( \alpha \); \( RAB7 \) small guanosine triphosphatase late
endosomal protein; \( GARS \) glycyl-transfer RNA synthetase; \( NEF \) neurofilament light chain; \( HSPB1 \) heat shock protein
beta-1.
insufficient evidence to determine the usefulness of routine genetic screening in cryptogenic polyneuropathy patients without a classic hereditary neuropathy phenotype.

**Recommendations.** Genetic testing should be conducted for the accurate diagnosis and classification of hereditary neuropathies (Level A). Genetic testing may be considered in patients with a cryptogenic polyneuropathy and classic hereditary neuropathy phenotype (Level C). There is insufficient evidence to support or refute the usefulness of routine genetic testing in cryptogenic polyneuropathy patients without a classic hereditary phenotype (Level U).

**Clinical context.** To achieve the highest yield, the genetic testing profile should be guided by the clinical phenotype, inheritance pattern (if available), and EDX features (demyelinating vs axonal). See the figure for guidance.

**RECOMMENDATIONS FOR FUTURE RESEARCH**

This comprehensive review reveals several weaknesses in the current approach to the evaluation of polyneuropathy and highlights opportunities for research.

- Laboratory testing. The finding of a laboratory abnormality does not necessarily mean that the abnormality is etiologically significant. For instance, there is a relatively high prevalence of impaired glucose tolerance in patients with DSP; however, whether this is etiologically diagnostic is not known. This and other such examples point to the need for more research into the basic pathobiology of the peripheral nervous system. As an extension of this area of research, there is a need to determine whether aggressive treatment or reversal of specific laboratory abnormalities improves or alters the course of polyneuropathy.

- Genetic testing. The genetic revolution has provided great insights into the mechanisms of hereditary neuropathies. Genetically determined neuropathies are more common and clinically diverse than previously appreciated. Further research to identify genotype–phenotype correlation is needed to improve the evaluation process for patients with suspected hereditary neuropathies. The issue of cost/benefit ratio of genetic testing is important since an ever-increasing number of genetic tests are commercially available. More clearly defined guidelines for genetic testing are needed to maximize yield and to curtail the costs of such evaluations. Continued exploration into the genetic basis of neuropathies has tremendous potential for the understanding of basic pathophysiology and treatment of neuropathies.

**AUTHORS’ AFFILIATIONS**

From the Louisiana State University Health Sciences Center (J.D.E., A.J.S.), New Orleans; University of Kansas (G.S.G.), Kansas City; University of Washington (G.F.), Seattle; Providence Health System (G.T.C.), Southwest Washington; St. Louis University School of Medicine (L.J.K.), St. Louis, MO; Dartmouth Hitchcock Medical Center (J.A.C.), Lebanon, NH; University of Pennsylvania School of Medicine (A.K.A.), Philadelphia; Baylor College of Medicine (K.S., J.R.L.), Houston, TX; Weill Medical College of Cornell (N.L.), New York, NY; Wayne

---

**Table 2**

<table>
<thead>
<tr>
<th>Population</th>
<th>Cohort (no. of patients), total/CMT1/HNPP</th>
<th>CMT1A duplication (%), total/CMT1</th>
<th>HNPP deletion (%), total/HNPP</th>
<th>PMP22 mutation (%), total/CMT1</th>
<th>Cx32 mutation (%), total/CMT1</th>
<th>MPZ mutation (%), total/CMT1</th>
</tr>
</thead>
<tbody>
<tr>
<td>American27</td>
<td>75/63</td>
<td>56/68</td>
<td>ND</td>
<td>3.9</td>
<td>7.2</td>
<td>3.3</td>
</tr>
<tr>
<td>Spanish28</td>
<td>52</td>
<td>Excluded</td>
<td>Excluded</td>
<td>3.8</td>
<td>19.2</td>
<td>9.6</td>
</tr>
<tr>
<td>Belgian29</td>
<td>443</td>
<td>24.6</td>
<td>10.6</td>
<td>2.7</td>
<td>5.4</td>
<td>0.7</td>
</tr>
<tr>
<td>Finnish30</td>
<td>157</td>
<td>40.7</td>
<td>26.1</td>
<td>ND</td>
<td>7.6</td>
<td>ND</td>
</tr>
<tr>
<td>Slovene31</td>
<td>71</td>
<td>81</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>European32</td>
<td>975/819/156</td>
<td>59.4/70.7</td>
<td>13.4/84</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Australian33</td>
<td>224</td>
<td>61</td>
<td>ND</td>
<td>1.3</td>
<td>12</td>
<td>3.1</td>
</tr>
<tr>
<td>Russian34</td>
<td>174 /108/3</td>
<td>33.9 /53.7</td>
<td>100</td>
<td>1.1/1.9</td>
<td>6.8/7.4</td>
<td>3.4/5.6</td>
</tr>
<tr>
<td>Italian35</td>
<td>172</td>
<td>57.6</td>
<td>ND</td>
<td>1.2</td>
<td>6.9</td>
<td>2.3</td>
</tr>
<tr>
<td>Korean36</td>
<td>57</td>
<td>26/54</td>
<td>ND</td>
<td>1.7</td>
<td>5.3</td>
<td>5.3</td>
</tr>
<tr>
<td>Average</td>
<td>43/70</td>
<td>11/92</td>
<td>2.50</td>
<td>12</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

The mutation frequencies are given in the total CMT cohort and in the clinical phenotypes (CMT1 and HNPP) when available. Bold – CMT1 subpopulation; italics – HNPP subpopulation.

*Extrapolated total number and mutation frequencies recalculated for the total number. For the estimation of the total number, we calculated with the average frequencies for CMT1A duplication and HNPP deletion derived from the other studies.*
intended to exclude any reasonable alternative methodologies. The AAN, AANEM, and AAPM&R recognize that specific care decisions are the prerogative of the patient and physician caring for the patient, based on all of the circumstances involved. The clinical context section is made available in order to place the evidence-based guideline into perspective with current practice habits and challenges. No formal practice recommendations should be inferred.

DISCLOSURE
J.D.E. holds financial interests in Pfizer and has received research support from Wyeth and Pfizer. G.S.G. has received speaker honoraria from Pfizer, GlaxoSmithKline, and Boehringer Ingelheim and served on the IDMC Committee of Ortho-McNeil. He estimates that <2% of his clinical effort is spent on EMG and EEG, G.F., A.K.A., and K.S. have nothing to disclose. G.T.C. estimates that 30% of his clinical effort is spent on EMG. J.A.C. has received speaker honoraria from Athena Diagnostics and estimates that 40% of his clinical effort is spent on EMG/NCS, 10% on autonomic testing, and 10% on botulinum toxin injections. L.J.K. has received speaker honoraria from American Medical Sessions, Cross Country Education, Therapath Laboratories and CME, LLC, and holds equity in Passnet Air Ambulance. He estimates 25% of his clinical effort is spent on NCS/EMG, 4% on skin biopsy for nerve fiber counting, and 8% on autonomic studies, and has received payment for expert testimony in legal proceedings. J.R.L. holds financial interests in Athena Diagnostics and has received research funding from NIH/NEI, NIH/NIDCR, Charcot-Marie-Tooth Association, and the March of Dimes. N.L. serves as a consultant for Talecris Biopharmaceuticals and Quest Diagnostics, receives royalties from Athena Diagnostics, and holds equity and is a partner in Therapath LLC. He is the Medical and Scientific Director for the Neuropathy Association, estimates that <1% of his clinical effort is spent on skin biopsy, and has received research support from Talecris Biotherapeutics. R.A.L. has consulted for Talecris and has received research funding from MDA, Baxter Pharmaceuticals, and CMTA. He estimates that 33% of his clinical effort is spent on electromyography. He has received payment for expert testimony regarding the use of IVlg in CIDP and neuropathic pain after breast reduction. P.A.L. estimates 25% of his clinical effort is spent on autonomic reflex screening. D.H. has received research funding from NIH, Astellas Pharmaceutical Company, and MDA/CMT Association. He estimates that 25% of his clinical effort is spent on EMG and 20% on skin biopsies. J.H.F. holds financial interests in FEMI, Johnson & Johnson, Pfizer, and General Electric. He estimates that 40% of his clinical effort is spent on EMG/NCS. G.L. holds financial interests in GlaxoSmithKline and Formenti-Grunenthal. In addition, he has received research funding from Pfizer, Formenti-Grunenthal, Italian Ministry of Health, and Regione Lombardia. He estimates that 25% of his clinical effort is spent in an outpatient pain center, 25% on outpatient clinical examination, 25% on skin biopsy examination, and 25% on research. R.G.M. holds financial interests in Celgene, Knopp Neurosciences, Medivation, Teva Neuro, Taiji Biomedicals, and Translational Genomics. M.P. serves on the scientific advisory board of GSK, the editorial board of Journal of the Peripheral Nervous System, the speakers’ bureau of Pfizer and participated in the Joslin diabetes CME programs. He has received research funding from Antellas Pharma and Mitsubishi Pharma and reads clinical skin biopsies, runs an EMG lab, and cares for patients with peripheral nerve diseases. A.J.S. has received payment for expert testimony in the possible neurotoxic injury of the peripheral nerve.

DISCLAIMER
The diagnosis and evaluation of polyneuropathy is complex. The practice parameter is not intended to replace the clinical judgment of experienced physicians in the evaluation of polyneuropathy. The particular kinds of tests utilized by a physician in the evaluation of polyneuropathy depend upon the specific clinical situation and the informed medical judgment of the treating physician.

This statement is provided as an educational service of the AAN, AANEM, and AAPM&R. It is based upon an assessment of current scientific and clinical information. It is not intended to include all possible proper methods of care for a particular neurologic problem or all legitimate criteria for choosing to use a specific test or procedure. Neither is it intended to exclude any reasonable alternative methodologies. The AAN,
polineuropathy: a five year follow up. J Neurol Neurosurg Psychiatry 1994;57:1525–1527. (Class III)


